首轮AI大模型竞争与投资落幕,2025年全球人工智能投资预计达2000亿美元

作者:小编 更新时间2023-11-17 17:22:16 点击数:

生成式人工智能具有巨大的经济潜力,在广泛使用后的十年里,它可能会使全球劳动生产率每年提高1个百分点以上。这种人工智能投资的激增归因于生成式人工智能的巨大经济潜力。生成式人工智能是人工智能的一个分支,专注于基于大型语言模型创建新内容,一个例子是ChatGPT。

多家海外云厂商公布了最新一期业绩报告。其中,微软FY2023Q4营收为561.9亿美元,同比增长8%,净利润为200.8亿美元,同比增长20%;Alphabet 2023Q2营收为746.04亿美元,同比增长7%。净利润为183.68亿美元,同比增长15%;Meta 2023Q2营收为319.99亿美元,同比增长11%,净利润为77.88亿美元,同比增长16%。谷歌云Q2营收为80.31亿美元,同比增长约28%。微软2023财年第四季度的智能云业务营收为240亿美元,同比增幅15%。

2025年全球人工智能投资2000亿美元

预计到2025年,美国的人工智能投资可能达到1000亿美元,而全球对人工智能的投资可能达到2000亿美元,这一增长可能会提振整体经济。

自美国人工智能公司OpenAI在2022年11月推出聊天机器人ChatGPT,在全球范围内点燃AI热潮,截至2023年7月,全球已发布数百个大模型,仅我国年内就发布80多个,各大厂基本已躬身入局。

即便是百度、阿里、华为、微软、Google 、Meta这样走在AI技术前沿的公司,都在这场“终极玩家”厮杀赛中面临难以回答的问题——“投资巨大,如何盈利?”

飓风刮了大半年,几天前,微软、Google 、Meta 相继发布Q2财报,并宣布接下来将继续加大对人工智能的投入以稳固优势地位,但此前上百亿美金的投资并未带来及时的回报。此前凭借ChatGPT股价大涨的微软,财报会后股价连续2日收跌。资本隐隐有躁动迹象。

事实上,多位投资人认为,当前围绕AI大模型的首轮竞争与投资已然结束,接下来的竞争轮次中,只有解决商业化落地,才能缓解投融资难。第二第三梯队是本轮未上车资方的出手方向。

从2023年上半年的人工智能相关的融资事件的轮次分布来看,天使轮、A轮以及战略融资事件数量位居前列,分别拥有59、57以及38起,共计154起。

当前大多数投资人“出手难”的关键,在于怎么找到适合自己的应用场景去落地,实现商业化,而大多数公司目前可能连过河的石子还没摸到。

一个可供参考的信息是,OpenAI成立的前15个月,都没有一个明确的研究目标。2016年5月,时任谷歌首席AI研究员参观OpenAI,对其工作方式曾相当困惑。

预训练大模型技术使得 AI 的通用能力往前迈了一大步。几十亿、上百亿参数的模型不仅能够迅速处理海量信息,还能理解人类自然语言的输入、进行复杂的逻辑推理,并掌握了优秀的内容生成能力。AI 正在从特定任务的解决方案转向具有更广泛应用性的解决方案,或者说,有望大规模地创造价值。

一场关于生产力的革命已在酝酿之中。全球管理咨询公司麦肯锡在最近的报告《生成式人工智能的经济潜力:下一波生产力浪潮》中指出,生成式 AI 每年可能为全球经济增加 2.6 万亿到 4.4 万亿美元的价值。

在几天前的亚马逊云科技纽约峰会中,「生成式 AI」同样是全场提及频率最高的关键词。

「如今,大模型可以在大量无标注数据中进行预训练,实现开箱即用,以处理各种通用性问题。此外,只需相对少量的标注数据进行微调,它们就能用于特定领域的应用。」亚马逊云科技数据库、数据分析和机器学习全球副总裁 Swami Sivasubramanian 表示,「通过微调轻松定制预训练模型的能力,绝对是游戏规则的改变。」

半年来,大模型之战如火如荼。当 OpenAI 和谷歌你追我赶,迅速崛起的「开源」力量也不容小觑。可以预见的是,在未来的大模型竞争格局中,「没有一个模型可以统治一切」。

在 ChatGPT 发布两个月后,Anthropic 公司就迅速开发出了「最强竞品」 Claude,又在 7 月初完成了 Claude 2 的升级。被称为是「AI 社区内最强大的开源大模型」的 LLaMa,在不久前也升级为 LLaMa 2,不断抬高开源大模型的能力上限。

正像一些业内人士所说,任何一家闭源的大模型提供商都没有护城河。不管是 LLaMa 还是 Claude,开源大模型都显示出了迭代速度更快、可定制性更强、更具私密性的优势。

而这些开源大模型的力量,正在越来越多地汇聚于亚马逊云科技的服务之中。

今年 4 月,亚马逊云科技发布了全托管基础模型服务「Amazon Bedrock」,以「关键基础设施提供商」的角色加入了大模型之战。

在今天,即使生成式 AI 模型的功能已经如此强大,它们仍然无法代替人类「执行」一部分关键的、个性化的任务。

比如一位顾客想咨询换货,电商平台的 AI 客服当然可以迅速地告知顾客想要的款式、尺码、颜色是否还有库存,但无法完成接下来的订单更新或交易管理的操作。

这恰恰是「生成式 AI」转化为「生产力」过程中非常关键的一步。

问题并非不能解决:模型通常可以附加 API、插件、数据库以扩展功能,为用户自动完成某些特定的任务。比如 ChatGPT 此前就推出了插件机制,还为开发者提供了开放平台,允许更多用户根据自己的需求、想法和专业能力进行扩展。

生成式 AI 时代的搜索技术变革

在解决大模型落地挑战的火热讨论中,「向量搜索」和「向量数据库」的概念开始被越来越多的人熟知。这是检索技术层面在生成式 AI 时代正在发生的变革。

首先,伴随数据规模的增长,关键词检索已经不能满足需求,向量检索可作对传统搜索技术的补充。通过将数据表示为向量,模型可以快速分析和理解大量信息,准确地识别和匹配相似的项目。

其次,经过预训练的大模型固然能力出众,但也存在一些不足,比如缺乏领域知识、缺乏长期记忆、缺乏事实一致性的问题。而在数据规模不断增长、算力日益珍贵的现状下,向量数据库可作为大模型的「超级大脑」,打一份小抄,相对较低的成本补充动态知识,满足用户不断增长的需求。


Tag: 大模型 AI
首页 资讯 AI写作 我的